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Computing Periodic Solutions And Their Parameter Dependance

Michael E. Henderson™®

Abstract

It has become fairly standard 1o compule periodic solutions in sysiems of ODE’s, and
1o track the solutions and their bifurcalions as some parameler in the equalions s varted.
I will describe the cquations used and some of the consideralions which arise when the
method is implemented. Finally, I will describe one applicaiion, where these techniques
have been used to compuic periodic solulions for a pair of coupled pendula.
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Abstract

It has become fairly standard 1o compuie periodic solulions in systems of ODE’s, and
{o track the solutions and iheir bifurcations as some parameler in the equations 18 varied.
I will describe the equations used and some of the considerations which arise when the
method is implemented. Finally, I will describe one application, where these {echniques
have been used to compule periodic solulions for a pair of coupled pendula.

1. Introduction : _

The simplest way to compute stable periodic solutions of a system of ODE’s 1s to
integrate forward in time. If the initial point is within the basin of attraction of a stable
periodic solution the trajectory will eventually approach the periodic solution. It is then
necessary to detect when the time signal is periodic, and compute its period.

An alternative is to cast the periodic solution as the solution of a two-point boundary
value problem, and solve for the periodic solution directly, using Newton’s method, or
a relaxation scheme. The period of the oscillation is obtained directly, and unstable or
marginally stable periodic solutions can be computed.

This technique has become fairly standard in the study of nonlinear systems, where
the structure of the unstable periodic solutions is important. In this talk I will briefly
outline the two point boundary value problem used, and how to compute the stability of
the periodic solutions. Finally I will show an example, periodic solutions in a system of
coupled oscillators.

2. Periodic solutions
Consider the autonomous system of ODE’s:

(2.1) a' = F(x, ), z €™, AcR.

Aside: Tf the system that you wish to solve is non-autonomous, with periodic
coeflicients, say

(2.2) y =y, t, ) fly A+ T2 = f(y, 1, A)

it may be rewritien as an autonomous system by “suspending” the system. For
example, let

9 O Ty — Y n al
23 = (1) = (1) e <m
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then the nonautonomous system (2.2) becomes
(23) 2 = (f(n.’._y,lﬂ.:i, /\))

We will write a two point boundary value problem for the periodic solution. In order
to keep the boundary value problem on a fixed interval time is scaled by the period. A
periodic solution of (2.1) of period T satisfies

' — F(x, )
2(0) — 2(T)

L]

” i

I

with ¢ = T'r, this is equivalent to

—TF(z,) =0,
(2.5) " (,2) = )

2(0) — 2(1)

The linearization of (2.5) about a periodic solution 2(7) is

&, — Ty (2, \)7,
2(0) - #(1)

If a particular 2 solves (2.5), then differentiating (2.5) with respect to 7 gives

(2.6)

9.7 Trr — ,—11]7.1?('7“’) A)’7~r =0,
(2.7) #.(0)—2,(1)=0
So the linearized equalions (2.6) are singular, with null vector given by the 7 derivative of
the solution. The geometrical interpretation of this singularity is that time may be shifted
by any arbitrary amount, or that the phase of any periodic solution i1s undetermined.
This indeterminacy is removed by adding a phase constraint. Roughly speaking, the
number of unknowns (2:(7),7") is greater thaun the number of equations by one (e.g. the
period 7). An additional constraint is needed to make the counting correct.
Necessary conditions for the phase constraint can be lound by use of the “Bordering
Lemma”.

Bordering Lemma (2]
Let

(A B
AT\ e _1:))

be a linear operator A: B xR — B x R7. Jf A is singular and
dimAN(4) = codimR(A) =»r > 1,
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then A is nonsingular if and only of

(2.8q) dimR(B) =7, R(B)NR(A)=0,
(2.8b) dimR(C*) =r, N(A)NN(C*)=0.

For periodic solutions partition (2.5) into the ODE and phase constraint, and the
solution into # and the period 7. Thus r = 1, and the partitioned form of the linearized
system (2.6) is

9 _TFy(x,\) —F(x,X)
— ar * ) -
(2.9) | A ( IRERADY pr(x, T, A) ]

Here the phase condition has been written
(2.10) p(z) =0.

The first condition (2.8«) is salisfied by all phase constraints: Suppose there is a function
#(7) and nonzero constant £ such that

(2.11) g, — 1 F.a=¢TTF
That is, F is in the range of the linearized ODI. Now,

(2.12) TF = a,,

(8 - = '/‘f",-,f) Exy = 0.
T

If zero is a simple eigenvalue of the linear operator %7 — TF,, then is a contradiction, and
so (2.8a) 1s satisfied.

The second condition (2.8h) is not satisfied for all phase consiraints. In the space of
period one functions, we have

so we have that

2
(2.13) (?— - Tﬁ‘x) 7

\(97‘

i

A= -TF, C = py

(2.14) N () = {az | e € R} N(C*) = {o] pov = 0}

Condition (2.8b) is satisfied if and only 1f

1
(2.15) pal(@) 2, = / pa(2(7)).r (T)dT # 0.

=0

3. Phase Constraints



There are probably as many possible phase constraints as there are problems. Some of
them only work for a particular class of problems, while others are designed to work with
any problem. For a discussion of some of the possible constraints see [7]. T will discuss two -
which are for general problems.

The constraint used by Poincaré to establish persistence of periodic solutions in ce-
lestial mechanics 1s

(3.1) pl) = 22(0).(x(0) — =°(0)).

Here 2°(7) is a periodic function (period 1) that is nearby’ the periodic solution. This
has a very simple geometric interpretation, see Figure 3.1. Condition (2.15) is satisfied if

(3.2) 29(0).2,(0) 5 0,

This means that the tangent to the reference periodic solution must not be perpendicular
to the tangent of the periodic solution. For methods based on parameter continuation, 2:°
1s the periodic solution at a nearby parameter value.

A more robust phase condition was proposed by [3]. Tt 1s

(3.9) ple) = [ %) (a(r) = ()

This can be seen as choosing the phase so that the distance

1
(3.4) /0 la(7 + 6) — 2°()|? dr

1s minimized at # = 0. This is more robust because the inner product (2.15) is

1
(3.5) / 22(7).2, (T)dT,
Jo

which includes all points on the periodic solution. (Note: In practice almost any phase
condition will work.)

Aside: Tor non-antonomous systems we have that (2-t) (1) = T' # 0, so the con-
straint 2_1(0) = 0 always satisfies (2.15) (and is natural). Phase constraints aren’t usually
discussed 1 connection with non-autonomous systems, probably because of this. A phase
constraint like (3.3) using 2°(7) = (0, 7) might also be considered natural.

4. Stability of Periodic Solutions

The theory which deals with the stability of periodic solutions is called Floquet Theory.
Almost any advanced hook on ODE’s will discuss il, for example [8] and [5]. [4] also has
a discussion of the theory. Usually these are in connection with non-autonomous systems,
or “systems with periodic coeflicient’s”.



Suppose we have a periodic solution of (2.5). The trajectory of a point started nearby,
at 2(0) 4 ey will stay near the periodic solution a(7), and eventually return to a neighbor-
hood of 2(0). The mapping R which takes a perturbation y around the periodic solution
is called the Poincaré return map.

The trajectory of the perturbation £(7) satisfies

g —TF—ATF =0
(4.2) £0)=y
po€ = 0,

and the return map is Ry = £(1).
The return map can be expressed in terms of the fundamental solution matrix Y,
which is the solution of the initial value problem

Y, — Ty (x(r), )Y =0

(1) Y(0)— I =0.

and a particular solution n(7) where n(7) is the solution of

n —TEyy =1

1 20) =0
In terms of ¥ and 1,
(4.4) £(r) = Y (r)y + AT()
The phase constraint gives

(I 3
(4.5) | /) pe(r)Y ()y dr + AT /O pa(r)p(r) dr = 0.
50,

A ~1 ] .

(4.6) AT = o /0 pa (7)Y (T)dr
and

‘ » i n(1) :
47 Ry =¢(1) = [ V(1) = ——2 o (7).Y (7 dT) .
(4.7) )= €(1) ( W=t [ retrynar) y

Wheun the phase constraint (3.1) is nsed this has a simple geometric interpretation.
Equation (4.5) in that case chooses the perturbation of the period AT so that y returns to
the plane 2°(0).6(1) = 0. When other phase constraints are used the interpretation is not
as simple. One effect of constructing the return map this way is that while Y (1) always
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has an eigenvalue at | (Y(1)2z, = 2.), whereas the return map R takes y = 2, into 0,
so the eigenvalue | is moved to 0. This improves the numerical conditioning of locating
bifurcation points. _

Aside: For non-autonomous systems with phase constraint z_£(0) = 0 a simple cal-
culation gives

(4.8) yi+ AT =0.

So perturbations which have y4 = 0 (i.e. which satisfy the phase constraint) return to
Y (1)y. Discussions of the stability of periodic solutions of non-autonomous systems usually
use the Fundamental Solution matrix for the return map R.

The stability of the periodic solution is determined by the eigenvalues of R, which
are called the Floquet multipliers of the periodic solution. If the perturbation y is in the
eigendirection v corresponding to a Floquet multiplier A, the value at return is

(4.9) v — Ro = dv.

Floquet multipliers which lie inside the unit circle therefore mean that perturbations in
those directions grow smaller (Jv] — |Aljv]). and multipliers outside the unit circle mean
that perturbations grow larger. Multipliers lying on the unit circle signal a neutrally
stable direction, and may indicate a bifurcation. There are other necessary conditions for
the existence of bifurcating branches. The multiplier must cross the unil circle, not just
touch, and there are non-degeneracy conditions on higher derivatives of the system.

If a Floquet multiplier lies on the unit circle at 1 the periodic orbit is neutrally stable
to an orbit pertod 7'+ AT If a Floquet multiplier lies on the unit circle at —1, the periodic
orbit is neutrally stable to an orbit of period 27" + 2AT. This is because “folding” the
return map, or iterating it twice, squares the multipliers, and so the folding map has a
multiplier at 1. The period doubled branch can nsually be found using the initial guess

(1) + ey(27) T el0,1/2)
a(7) — ey(21 — 1) T € [1/2,1)

The situation for a complex multiplier on the unit circle is a little harder to describe.
Basically, if the argument of the multiplier (tan™'(7mag())/Real()))) is rational (say
p/q), the periodic orbit is neutrally stable to an orbit with period ¢T +¢AT. For example,
multipliers at et27/3
Conjugate pairs al irrational angles indicate the bilurcation of quasiperiodic solutions,

indicates a period tripling bifurcation.

or invariant tori. In the return map these are invariant circles.

5. Newton’s Method for finding a Periodic Solution

The final system which must be solved is
x, — TF(x,A) =0,
(5.1) 2(0) — 2(1) = 0.
p(2) = 0.

6



As an example, lel’s use a simple box scheme to discretize (2.5) and the phase con-
straint. The mesh points in time are {r;}, with corresponding values {;}. The discrete
version of (2.5) is then

2p — 2oy — (1 — 7o) TF (% +2i21)/2,A) =0,
(5.2) zg—ay = 0.
p(z) = 0.

To implement Newton's method we have to solve the linearization of this, which is

'{1 — "Ei.—l - (TI - Ti——l) + Tl;‘.‘l}("”"(l‘l)g]; )‘)(';'1 + ;1—])/2 + P‘(ma.vg; )‘)’i1 =T,

5-"0—51\’ = 8.

}: pe; (2)E = 0.

(5.3)

Where, 240y = (2 + 2i-1)/2. The block structure of this system 1s

| e Iy | \ (7‘1 \
l I To )
L] I ];‘g IN'; T3
L] l F4_ .’54 T4
(5.4) e | Fs X5 _|7s
| Fs g 6
o | Fy_ X7 7
I b =7 TN

\OQ‘QOQQQI i)\(g)}

f we block the problem into {#;}Y ! and the pair {#x,T} the upper left block is lower
bi-diagonal. One method of solving this is to use block elimination

Block Elimination Algorithm

To solve
A B Y [
c* D y/) \s

when A 15 nonsingular, lel

(5.5) Ay =7 |

| A7 =—B
Then

(5.6) v vt Ty



and y s the solution of the equalions

(5.7) (C’*Z +Dy=s— *o.

For (5.4), A is lower bi-diagonal, so the vector v and the rectangular matrix Z can
be found by elimination, which is equivalent to an integration for each column. The
first columns of 7 are the fundamental solution matrix, and the last column of 7 is the
particular solution 7 (eq. 4.3). The Floquet multipliers can therefore be easily found
during the bordering algorithm.

The Newton correction is found by solving (5.7), which is a square system of size one
greater than the number of components of ay.

6. Continuation

In the following example we will track the solutions of the two point boundary value
problem as a paramcter is changed. The particular algorithin used is called Pseudo-
arclength continuation [0]. This requires that an additional constraint, called the pseudo-
arclength constraint, be added. The resulting system for the periodic solution is

2, —TF(z,A)=0,
#(0) — 2(1) = 0.

1
(6.1) /O (7). (2(7) — 2°(r))dr =0
1
/ &(7).(x(r) — 29(r))dT = ds.
0

The derivative of the reference solution with respect to arclength 22 is used in the con-
straint. This derivative 1s found using the system

i, —Thye —TF—TIW\=0,
#(0) — #(1) = 0.

(6.2) /O 20 (7).(a(r) — 2(r))dr =0

1
/ #2(r)dr 4+ AT = 1.
Jo

Both (6.2) and Newton’s method applied to (6.1) are identical to (5.1) with an ad-
ditional constraint (pscudo-arclength) and unknown (A), and may be solved using the
bordering algorithm. .

The continuation method uses an initial solution and its tangent (2%, A\°) to predict
the solution at a nearby parameter value

(2(s), A(5)) ~ (20, A") + ds(2°, A°).

8



This guess is then corvected using Newton’s method fov (6.1).

As the continuation progresses along the solution branch the Floquet multipliers are
monitored. When the number of multipliers inside the unit circle changes a bisection
algorithm is invoked to locate the parameter value at which a multiplier crossed the unit
circle, and a special routine is called to classify the bifurcation and construct a list of
tangents at the singular point.

7. An Example, Coupled Pendula

I’ll briefly describe some results which were obtained using the above algorithms (al-
though not the same discretization) for the problem of a pair of linearly coupled pendula.
For more details sec [6], and [1].

The motion of a pair of pendula, with equal damping v and possibly different applied
torques Iy and Iy, coupled together with a linear torsional spring of strength % is given by

b1+ vy +sin g + k(g — b)) =1,

(7.1) - . .

P2+ vd2 +singy + k(do — ¢1) = .

Here the ¢’s are the angles which the pendula make with the vertical.
This system is a damped Hamiltonian system, with Hamiltonian

, S 1 - . 1
(7.2) H{(p1, P2, b1, 42) = 5((¢1)2+(¢2)2)“ (cos ¢y +cosdy)+ 5’“(051 —¢2)2 — 11 — 1269,
System (7.1) can be written
(7.3) 2= JV,H — D2,

where

o (00 o= (00 (1Y)

@ = col (41,42, b1, 6.

There are a large variety of motions of the pendula, including regimes where both
pendula “tumble” together (large nel torque), and regions where one pendulum “sits”
while the other “runs” (small coupling). All periodic solutions are “second kind”, that is
the sum of the two angles (¢1 + ¢2)/2 increases by at least 27 over a period. The so called
“synchronous solution”, where the separation between the pendula is almost constant is
such that the average of the two angles increase by exactly 2n. Solutions that bifurcate
from the synchronous solution by a period doubling have the average angle increase by 4n
and so forth.

The following ligures show the periodic solutions connected to the synchronous solu-
tion at two different values of the dilference between the torques ((7; — I3)/2). All show
the same characteristic shape, at large average torque the two pendula both “tumble” (the

9



curve of solutions approaches the synchronous solution), and as the torque is decreased the
pendula spend more and more time near ¢ = m, and so the period increases, eventually
approaching a heteroclinic connection.

Figure 7.1 illustrates a period doubling bifurcation, and 7.2 shows a larger difference
between the torques, al which a pair of heteroclinic connections which have appeared. One
of this new pair has the structure associated with a Shil’'nikov bifurcation, which gives rise
to a horseshoe map and its infinite family of periodic solutions. For more details see [6].

8. Conclusion

Not every problem requires that the structure of periodic solutions be computed in
detail. However, when that detail is needed it 1s possible to calculate both stable and unsta-
ble periodic solutions, and associated I'loquet multipliers, which give detailed information
about the stability of the solutions. ’

The basic technique is to formulate a nonsingular two point boundary value problem,
and solve il with Newtons method. The boundary value problem is natural, except that a
phase constraint is necessary when working with autonomous systems. Newton’s method is
considered expensive computationally, but bordering techniques reduce the work to solving
a band matrix with small band. The method 1s therefore not much more expensive than
integration techniques.

Fivally, this approach is proving useful in the study of dynamical systems. To un-
derstand the approach to chaotic motion it is necessary to understand the topology and
stability of periodic solutions over a range of parameter values. It has become feasible
to compute this type of structure numerically, and so study the transistions in realistic
systems.
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Figure 7.1. Period as a {unction of average torque I for equal torques.
Coupling strength k=.1, and damping v = .5. (From [6].)
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