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Branch Switching in Homotopy Methods for

Finding all Roots of a System of Polynomials

Michael E. Henderson

Summary. In 1978-79 three papers appeared which proposed using homotopy methods to find all the roots
ofa systém of polynomials. A basic difference between the papers is how they avoid having to compute the
tangents of the homotopy paths at singular points. In this paper we show how the tangents may be casily
computed, using éfheorcm on the existence of femilies of related paths through the singular points. We then
describe how this theorem may be gsed to construct a branch switching algorithm so that pscudo-arclength

continuation [10] may be used to follow the homotopy paths.

Subject Classifications: AMS(MOS): 65H10; CR: G 1.5



I Introduction

A system of polynomial cquations is & set of NV equations of the form

M,
(1) ai(z) = E c,-jz:m ...z;"'" =0.
i=1

Here z; are complex scalars, M; is the number of terms in the ith equation, ¢;; is the coefficient of the
7** term of the itk equation, and the Nijk 8re positive integer exponents. The degree of equation § is the

meaximum of the sum of the exponents of its terms

N
d,' = mp.xz:n,-,-h.
2

k=1
Homotopy methods for finding the roots of a system of equations

Alz)=0

A4: ¢V, ¢¥

use an initial system A%(z) = 0 whose roots {z;} are known, and a system H(z,1) = 0, called a homotopy

of A° into A, which depends on a homotopy parameter A. The homotopy is such that
H(z,0)= 4%=z), and  H(z,1) = A(=z).
The homotopies considered here are all of the form
H(z,2) = (1 - 2)4%(z) + 24(=).

To find the roots of 4, a homotopy method computes the homotopy paths z;(2), satisfying H (z; (A), ) =
0, and z;(0) = z?. If all the paths exist for A — 1, the roots of 4 have been found.
There are three components to a homotopy method:

1. An initiel system A° must be specified,



2. It must be shown that the homotopy paths z;(}) exist for A =1,
3. A numerical method must be specified to compute the homotopy paths.
It is not easy to find polynomial systems which can be solved explicitly, so there is not much freedom

in choosing the initial system. One class of systems whose roots are known is
di
af(z) = =" — .

The roots of this system are determined by the constants a;, and it can be shown (Garcia and Li [9]) that
this initial system always has at lcast as many soiutions as does A(z) = 0. It also has the desirable property
that the homotopy paths are well separated in a neighborhood of A = 0.

The existence of the homotopy paths has been proven in meny djﬂ‘;:rcnt ways, scc [3], [6], or [7] for
example. Roughly speaking, Bézout’s Theorem states that the number of solutions of H at a particular
value of the homotopy parameter (counting multiple solutions and infinite solutions), depends only on the
degree of H at that parameter value. Therefore, if the degree of H is independent of A, the number of
solutions is also independent of A.

There are two types of numerical methods for following the homotopy paths; Simplicial Continuation
methods (see Allgower and Georg [1]), end Predictor-Corrector type methods (e.g. Kecller [10]). Simplicial

‘ontinuation methods partition the domain of H into small convex regions called simplices. The initial
solution lies in one of these simplices, and by continuity the homotopy path must pass through an adjacent
simplex. The faces of the initial simplex are checked to determine which the homotopy path crosses, the
simplices adjacent to those faces are marked and take the place of the initial simplex.

Predictor-Corrector methods use the initial solution and an approiifnation to the homotopy path passing
through that it to predict nearby points on the path. An iteration is used to locate a point on the homotopy
path near the predicted point. Of the two methods predictor-corrector methods are simpler to program,
and are faster for large systems, but may require expensive procedures to compute the predicted path near
singular points on the homotopy paths. Simplicial Continuation methods can handle maps that are not
smooth, and require no spec_ial routines to compute tangents near singular points, but are not well suited to

large systems.



I1. Existing Algorithms

In 1978 Chow, Mallet-Paret, and Yorke {3] introduced the idea of homotopy methods which are con-
structive with probability 1. They proposed to use a very simple predictor-corrector method,» and avoided
the difficultics caused by singular points on the homotopy paths by choosing the initial systeni so that the
peths are regular. They showed that for almost every iritial system 44 a regular ﬁomotopy path exists which
reaches A = 1. The algorithm is essentially this:

1. Choose an initial system at random.
2. Follow the homotopy paths through each initial solution until A =1 is reached, or a singular point
is found.
3. If the peth reaches A = 1 a root has been found.
If & singular point is found, discard that path and initial system. Repeat starting at stcﬁ 1 until
all roots have been found.
This method finds all the roots with probability one.

Drexler [6] also specified that the homotopy paths be regular. The initial system was fixed, and the
homotop& paramet;:r was allowed to lie on a path in the complex plane between A = 0 and A = 1. He proved
that the set of points A € C for which a homotopy path has a singular point is a set of isolated points. Thus
a regular path exists in the complex A plane which connects A = 1 to the origin. Chow, Mallet-Paret, and
Yorke [4] provided an alicrnate proof of this result. An algorithm based on this result is this:

1. Choose an initial system.

2. Foliow the homotopy path through each initial solution until A =1 is re;a.;:hed or a singular point
is found.

3. If the path reaches A = 1 a root has been found.
If a singular point is found, modify the path to avoid the singular point. Repeat starting at step 2
until A = 1 is reached.

Garcia and Zangwill {7}, [8] proposed using a simplicial continuation method to compute the homotopy
paths. This eliminates the need to avoid singular points. The complex system of polynomials is first imbedded
into R?N. They then showed that a real path exists for each initial solution which either reaches X = 1,
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becomes infinite, or has an accumulation point at A = 1. More recently, Brunovsky and Meravy {2] and
Wright {14] used a homogeneous parameter to mé.p infinity to a finite point, thus eliminating the possibility
of homotopy paths which contain infinite points.

Several recent papers report on implementations and refinements of the above algorithms.- Wright [14],
and Brunovsky and Meravy (2] have implemented versions of Chow, Mallet-Paret, and Yorke's algorithm.
Morgen [12], and»Kojima and Mizuno [11] have implemented algorithms similar to those proposed by Zangwill

and Garcia.

IM. Pseudo-Arclength Continuation

Pseudo-arclength continuation [10] is a predictor-corrector method for following homotopy paths. It
hes tan advantage over other predictor-corrector methods in the way it handles paths with steep tangents,
and its behavior near singular points. The particular algorit}}_m we will describe is called Euler-Newton
continuation. The tangent to the solution branch is uscd“to predict the path (an Euler Predictor), and
Newton’s method is used as’a corrector.

With an arclength parame;terization, the tangent to the solution path of G(z,) =0, through the point

(29, Xo) satisfies

Go&g +GAo =0
(2)

[l & " + 45 = 1.

This has two solutions when G; is nonsingular (the sign of the tangent is not determined). The sign is
chosen so that the inner product with a tangent at a previous point on the homotopy path is positive. The

predicted path is

z,(8) =z + 824

AP(’) = Ao + dio,
and the error in the prediction is bounded by



Newton’s method is next used to solve the system

G(z(s),A(s)) =0,
(4) .
25(2(s) ~ 20) + Xo(A(s) — Xo) — 2 = 0,
with the predicted path as an initial guess. The second constraint is called the Pseudo-arclength constraint,

and requires that the solution at s lies in a hyperplane normal to the tangent at (z,, o), at & distance s

from (2, Ao). There exists a p(s) > 0 such that Newton’s Method converges, provided that

1 (5 () 25(#)) = (e} M) [1< o()-

p(s) can be given explicitly in terms of norms of G and its derivatives (sec Decker and Keller [5]). In this
ball the path is unique. Only onc point on the path is computed (2 = As), and the path is approximated by
& line segment, or an Hermite interpolant, between (z(As),A(As)) and (zg, Ao). The step size As is chosen
as large as possiblp so thet the predicted solution lies within the ball of convergence for Newton's Method.
The Pscudo-afclcngth algorithm is this:
1. If G, is non-singular, solve (2) for the tangent (&, A).
Otherwise, switch branches using the algorithm described below.
2. Compute the predicted solution (z,(As),),(As)) using (3).
3. Correct the predicted solution by using Newton’s Method to solve (4), with the predicted solution
as an initial guess.

4. Repeat.

IV. Singular Points At a point where G, is singular the tangent to the path is not necessarily unique.
Equation (2) only determines the tangent to within & component in the null space of G, To overcome
this difficulty it is usual to use a Lyapunov-Schmidt Decomposition (see Vainberg and Trenogin [13]). The
cquations G = 0 are first projected onto the range of G, and the Implicit Function Theorem is used to
determine the component of the path in the complement of the null space of Gp, &8s a function of the
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component in the null space. The equations are then projected onto the complement of the range of G,.
These projected equations are called the bifurcation equations, and must be solved to determine the path
near the singular point. They may ususally be reduced to a set of algebraic equations for the tangent to
the path by an appropriate scaling, and are then called the Algebraic Bifurcation Equsations (thé ABE’s).
Unfortunately, the problem of computing the tangents et a singular point is thercfore equivalent to the
problem we set out to solve, although the size of the system has been decreased.

We show below that there is a symmetry of the ABE's which allows the existence of a family of paths
near the singular point to be inferred from a the existence of a single given path. We further show that one
member of this family exists in a neighborhood of the singular parameter value which lies on the opposite side
of the singular point from the given branch. This allows a path containing a singular point to be continued
past the singﬁlar point yvithout soiving the ABE’s. The resulting homotopy path is such that the parameter
) on the branch is monotone non-decreasing.

We assume that a branch of solutions of

G(z,A)=0
(4)

G:BxR—- B
which passes through the singular solution (z4,Ao) is given. Here B is a complex Banach space. (In this

paper we arc concerned only with C¥, but the result is more general.) We further assume that

Go(Z91A0) is Fredholm of index 0, and

(B)
dim(Null(G2)) = d < co.

(For CV these are always satisfied.)
Let {¢:}¢ be an orthonormal basis for the null space of G, {#:}{ an orthonormal basis for the null
space of Gg", and Q be the projection of B onto the range of G?. By the Implicit Function Theorem there

is a unique mapping a(£,n) € Rangc(Gg‘), such that

d
QG(zo + z £idi + a(é,n),lo +n)=10
1
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forall { € €? and 7 near 0. The bifurcation equations for this branch are

$iG(z(2)A(s)) =0 1<ic<d

| &(s) I + 1A(s) — 1 =0,

where

. 2(0) =20+ 60+ a(g(e) (o)

and A(e) = Ao + n(e). »

In the following discussion wé will switch freely between the representations (z,A) and (é »7), always subject
to (5).

Let F(z,)) = ¢:G(g(§,n),)\(n)), which is a mapping from €? x R — C<%. Expanding F in a power
series in z and ) about s = 0 yields
1 m

Fo 30 30 (7)) Bamee(ee) — 20" (38) - do)™ "

m=0 n=0

We will assume that near s = 0 the given branch behaves as

1
E(‘)N?._o'*'m‘MESM)'l‘O(‘M.’_l)

1
A(s) ~ Xo + _ﬁmgff) + O(s¥+1),

(6)
for some positive integers M and K. Then

hnd b m 1 n K)ym—n m—n
Fey, —Z{( )WFE‘AM-‘(Q()M)) (AT gn b )K(1+O('))}-

1
m. n
m=0 n=0

Or, grouping terms with like powers of s,

(7o) £> {%17(7:) WFQ‘»-.(ga“’)"uff")"“"a'u B ow)}-

~

=L mmn
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Here the second sum is over positive integers m and n such that nM + (m — n)K =l and n < m. The
first two terms venish, since F° = 41G° = 0, F_.‘_’ = ¢,-‘Gg = 0, and either F{ = 0 (a bifurcation point), or
F)£0= Jo=0 (a fold). We will assumec that the first non-zero term is the L*®, for some L > 2.

The arclength constraint-becomes

1

®  Groe

§2=1)]| L0 ”’ P . ‘z(x-nl,\gx)l’ —140(2M-1,2K-1) = g,
(K -1}t .
Because an arclength paramecterization has been used, it is necessary that cither M =1 or K = 1.

The Algebraic Bifurcation Equations {ABE’s) are obtained from (7a) an-d (76). by scaling (7a) by s~ L,
substituting for ggM) and ASK) as functioﬁs of { aﬁd 7, and then letting & — 0. We have tabulated the first
few ABE’s for M =1 in Table 1. Note that these are not the coefficients of a power series of F(s) in s. (The
coefficients of &' for I > L are modified by the O(s*+?) terms in the coefficients of s, L<Ek< L)

For cach isolated root of the ABE’s, the Implicit Function Theorem states that there is a corresponding
isolated branch of solutions of the form (6) passing through the singular point. We shall assume that the
given solution branch corresponds to such an isolated root. (If it does not, it may approach the singular
point tangentially to another branch. If this occurs, the ansatz (6) must be modified to include terms which
distinguish the branches.) One isolated root of the ABE’s is therefore known, and we use this root to

construct other isolated roots.

Theorem 1:
Let G be @ mapping of type (A), satisfying (B). Assume that G has an infinile number of
bounded derivatives. (A finile number are required, but the number depends on the degree of the

ABE’s.) If a branch of the form

z(8) ~ 24 + 82y + O(s?)

A(g) ~ X + -}%’KAS)K) + O(,K—H)’

exisis in a neighborhood of the singular point (zg, o), and if that branch corresponds to an isolated
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rool of the algebraic bifurcation equalions, then branches of the form

2(s) ~ =9 + aszf) + 0(s?)
(8)

: 1
A(8) ~ Ag + aF.K,\g") +0(s%H1)

also ezist in a neighborhood of the singular poinl, provided that the peir (a, B) satisfys

a = ﬂl/K

B = +1.

Proof:

We must show that the branches (8) correspond to isolated roots of the ABE's. The ABE's

for this type of branch are

tL/K] m 1 n
E : 0 °n K)\ ™~ -
(9) (n)F'"‘,““Ksm—n“ (™ =0

m—n=0
el =1,

where

d
i =) §(0);
=1
AE) - n(K)(O)
We look for other roots of (9) of the form ety and BASE) (aéo(O), and ﬂn((,x)(O).) Substituting, we

must have

[L/x]

L —K g\(m-n) {m o 1 cn () (KR
(10) * m_zuo(a A) (n)F‘““"Wuo('\o ) =0,

lal*[l 4o [I* = 1.

Here the integers n and m are related byn =L - K(m—n). When of = B, end |a] = 1 equation

(10) is satisfied. ) is a real parameter, so 8 must be real, therefore 8 =+1.

With this choice of a and 8 (10) is identical to (9)- The given branch corresponds to an

isolated solution (éo,ngx)) of equation (9), so the Jacobian Jo of (9) at (éo,ngx)), is non-singular.

~10-
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The Jacobian at the scaled root (aéo,ﬁ)‘gx)) is & non-singular transformation of Jp, so the scaled
root is also an isolated root of the algebraic bifurcation equations.

We have shown that for each pair o = (:l:l)l/x,ﬂ = =1, there is an isolated root of the ABE’s,
and hence a branch of solutions passing through the singular point. Near the singular poﬁt these

branches behave as
u(s) ~ ug + (£1)/ ¥ sizy + O(s%)

1

A(J) ~ Ao + !

,\f,’”a" + O(JK'“).l

If K is even, the given branch exists only in a neighborhood ton one side of Ag. The branches with
B < 0 exist on the other side, so if the path following algorithm switchs to one of these branches, the given
branch can be continued past the singular point, with monotonically increasing parameter. Further, if one
particular root of —1 is use‘d to determine a, and the choice is consistent, distinct branches which approach
the singular point non-tangentially will be switched to distinct branches. If K is odd, the branch switching
algorithm does nothing, for in that case the given branch exists on both sides of Ao.

This result is, in & local sense, the same as the result of [6]. The family of branches whose existance
is given by Thcorc?n 1 is the same as the family obtained by traversing an infinitesimal circular path in
complex parameter space about the singular point, starting at & point on the given branch near the singular

point. Each helf circle traversed changes the sign of 8, and each full circle multiplies o by e2*i/X,

V. The Homogeneous Coordinate
To avoid difficultics with possibly infinite roots, we introduce a homogenous coordinate ¢ € _C, which

maps infinity to a finite point. Let

u=(z,t),

and scale cach cquation by ¢ raised to the degree of the equation. This new system, tP H(z/t,)) will be used
to compute the homotopy paths.

The solutions of this new system are not well defined. The system is homogenous in u, so any solution
may be multiplied by a complex scalar. We introduce two different constraints to determine this scalar. For
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the purposes of applying Theorem 1 we will use the complex constraint
(11) FPu=1,

where [ is some fixed complex vector. For any particular choice of ! it is possible for the solution to become
unbounded, but there will be another choice of I for which that solution is bounded. For computational
purposes it is better to have a single constraint which always guarentees a bounded solution. We therefore
introduce a normalization constraint

Nzl +1¢” =1.

This determines the solution up to multiplication by a complex scalar of norm one. To determine this relative

phase between z and t, we also impose the phase constraint

Irn(u); =0.
The system we usc for the homotopy is
tDH(E/tv A)
(12) o Glu )= lzl’+]ff -1} =0
Im(u)s;

Theorem 1 cannot be directly applied to G. However, since solutions of G(u,A) = 0 are isomorphic
to solutions of the system with the normalization and phase conditions replaced by (11), we may apply

Theorem 1 to this equivalent system, then use the isomorphism to bring the result back to G.

VL The Branch Switching Algorithm

Supposc that a branch of solutions of equation (12) with a singular point (10, A0) is given, near which
u(s) = ug + sty + O(a’)

A(s) = X — O(s¥)

-12-



Theorem 1 (applied to an equivalent system), implies that there is also a branch near the singular point of

the form .
4(s) = ug + asto + 0(s*)

i(c) = X + O(2%),

where, @ = (—1)/¥X . This branch does not satisfy equation (12). The outgoning branch must be multiplied

by an appropriate unitary scalar to make the k" component of u real. Let

ex = (To)a/l(uo)sls

and

c2 = (to)e/I(vo)l-

The scalar is then ¢; 4 @scy. The rescaled branch is

i(s) = cyuo + s(acy ity + aeaup) + 0(s?)

i(a) = Xo + O(JK-H),

which satisfies equation (12) and has real iy to first order in s. Because of the division it is desirable to
choose k so that |(uo)s] is as large as possible.
The branch switching algorithm requires that K be estimated at the-singular point. Suppose that an

interval of arclength [~a,b] is given which contains & singular point at s = 0, and that in the intcl.'va.l
A(s) ~ es® + O(s%1).
Then in the interval, A(s) is given by
A(s) ~ cK eX~1 4 0(s%).

If K is even A(—a) and A(b) will have opposite sign. The branch switching algorithm for odd K simply
multiplies the incoming tangent by 1, so we will consider only the case in which A changes sign on [~a,b].

-13-



K is defined such that (X *+1)(0) is the first non-zero derivative of A(s) at the smgular point. We must
therefore test the even dcnvatlves of A(s) to see if they vanish at the singular point. The end pomts of the

interval are given by

_ Aa:\(-—c'z) .
(13) ~ A(=a) - A(p) +o(ar)
_ AL() 2
=X a-a A
and
(14) ' A®)(0) = bAN(—a) + aXM(p) 4 Ex(0).

Here En(s) is the error of the Hermite interpolant for A™) in the interval [~a,b],

1
E,(0 Aln+) b.
(0) = CEmy 7L (Ol
So if

[BAN)(~a) + aA™)(p)] > En(0)

A¥)(0) is non-zero.
The derivatives of A at the end points may be computed by solving the same linear system used to

perform the Newton corrector. Let

uy(s) = Z —a" f;‘)

n=0

N

1 itn
A)v(a):z;—!a Ag ),

n=0

Then,

Go(un () An (2))u™ D (a) + Ga(un(s), An(6)) AN+ (4) = ~§VIV!G(UN(6):AN(J)) +0(s)

- 1) + O(s).

: !
Zﬁ;u(N“)(a) + Zz\(',z\(N+1)(a) = —EN- (, :‘T
s
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Taking the limit as a — 0,

dN
GgugN“) + GgAgNH) = — 'ds_NG(uN(‘)"\N(‘))

. le=0
(15) o N 2
o (N+1 1ay(NH41 d d

)

Given an interval [—a,b] containing a singular point, the algorithm for determining K is this:

& an(s)

=0

1. If A(~a)A(b) > 0, K is odd, return.

2. Compute a and b using equation (13).

3. For K even, starting with K = 2;
a. Compute A(¥) at the end points of the interval using equation (15).
b. Use equation (14) to estimate A(K)(O).
c. fitis non-zero,-fetmn.

If it is zero, K + K + 2. Repeat from step 3a.

VII. Practical Considerations

For lerge problems the Jacobian A, usually has some structure which may be exploited to speed the

solution of the linear systems. The introduction of the homogenecous coordinate and homotopy perameter,

and the normalization, phase and pscudo-arclength constraints destroys this structure. It is thercfore de-

sirable to use a bordering algorithm to solve the linear systems [10]. The systems which must be solved

here may be decomposed into an N x N complex system, with three real borders. (The real and imaginary

parts of the component of u which is real, and the homotopy parameter, and the normalization, phase and

pseudo-arclength constraints.) These complex systems, bordered by resl constraints, may be solved using &

modified bordering algorithm. To solve
Azt by=r

Re(c*z) + dy = s,
where
z, T € CN: y,&EBM,
A: ¢V ¥, b:RM L ¢¥, ¢: ¢V o RM, 4:RM L RM,

~15-



let

Then
y = (d — Re(c"z)) (s — Re(c"v))

2 =v+dy.

For small systems, the linear systems may be rewritten as equivalent 2N + 3 x 2N + 3 real systems.

This has the advantage that & full pivoting strategy may be used.

It is impractical to compute p(s) in order to determine the step size As. Instead, we require that between
2 and 3 corrector iterations be done at each step. If too many iterations are required the step size is decreased

by a factor of 1.2 and the step is repeatéd. If too few are required the step size is increased by a factor of

1.2 for the next step.

This has the disadvantege that the solution ma: jump’ from one path to another. In order to detect
g Y P

any jumps we require that
L |u—uy| < cAd’.
2. |As| < Aspayg.
3. u may not be real if u, is non-real.

If any of these requirements is violated the step size is decreased by a factor of 1.2 and the step is repeated.

VIII. Examples

We have epplied the above algorithm to several polynomial systems from [12], (11], [14], and [2]. For
cach we tabulate the solutions found, and plot the quantity 2 [(Re(t) —Im(t))(Re(=;) +Im(z;))] as a function
of the homotopy parameter. Real homotopy paths are shown in solid line, non-real paths in broken line. As
& measure of the complexity of the algorithm we count the average number of steps along each homotopy
path. Each step requires at most three LU decompésitions and three back-solves.

~16-



(1) From Morgan [12], Problem 3.

(2)

z+10y=0
\/g(z —w)=0
(z-22)*=0
V10(z - w)® =0.
There is only one solution, with multiplicity 4. It is
w ] y z t
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

The Homotopy paths for this problem are shown in Figure 1. An average of 43 steps per root were
required along the homotopy paths. There arc four singular points on the homotopy paths. Two are
simple quadratic folds (K=2), one is a simple cubic fold (K=3), and the fourth is the singular point at
A = 1. The last is a multiple bifurcation point, with a two dimcn,sio:‘la.lv ;tullspace. The branches are
peired, each pair with K=2. In [12], 36 initial paths were required to obtain 4 which reached A = 1. For
that elgorithm the paths averaged 18 steps per root.

From Kojima and Mizuno [11], Problem 4-1

Determine z and y so that
dzy) =zt +yt -2t -2yt - -ty P4y

is minimal. There are 9 extrema, given in the following table:

z y ¢ ¢
1 -0.531 0.000 0.733 0.000 0.425 0.000 -7.968 0.000
2 0.480 0.000 0.633 0.000 0.607 0.000 -0.987 0.000
3 0.577 0.000 0.577 0.000 0.577 0.000 -1.000 0.000
4 -0.401 0.084 -0.301 -0.316 0.801 0.000 -0.068 0.340
5 -0.401 -0.084 -0.301 0.316 0.801 0.000 -0.068 -0.340
6 0.293 0.012 -0.188 -0.305 0.886 0.000 0.330 0.155
7 0.293 -0.012 -0.188 0.305 0.886 0.000 0.330 -0.155
8 0.668 0.097 -0.111 0.327 0.652 0.000 0.118 -0.350
9 0.668 -0.097 -0.111 -0.327 0.652 0.000 0.118 0.350

The Homotopy paths for this system are shown in Figure 2. An average of 8 steps per root were required
along the homotopy paths. There is only one singular point on the homotopy paths, a simple quadratic
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fold V(K=2). In [11], each path required an average of 121 pivots. This is the number of simplex faces
the path passed through. It therefore measures the number of function evaluations required.

(3) From Wright [14], Problem B o
(z-y-1)P=0
z? ~ ¥ =0

There are two solutions, both of multiplicity two.

F Yy t
1 0.408 0.000 -0.408 0.000 0.826 0.000
2 0.707 0.000 0.707 0.000 0.000 0.000

The Homotopy paths for this system are shown in Figure 3. An average of 22 steps per root were

required along the homotopy paths. In [14], approximately 431 steps were required per path.

We found four singular points on the homotoéy paths. Three are simple q;adratic folds (k=2), the last
is 8t A = 1 and has one pair of branches with K=1, and a second pair with K=2.

(4) From Brunovsky and Meravy [2], Problem 1

z+10y =20
410y = -20
There is one solution,
z Yy t
1 -0.995 0.000 -0.100 0.000 0.000 0.000

‘The Homotopy paths for this system are shown in Figure 4. An average of 11 steps per root were
required along the homotopy paths. Notice that the lincar system is singular, and that the algorithm
has found the null vector. There were no singular points on the homotopy path.

(5) Finally, we solve the discretized form of the two point boundery value problem

u” + 'r"x’(u + %‘U?) =0,

#(0) = u(1) = 0,
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This always has the trivial solution w = 0, and from this trivial solution other branches bifurcate at
integer values of 7. For v = 4.5, and & discretization using six points on the iuterval, we found all 64

solutions. The first 8 are tabulated below.

u(h) u(2h) u(3h) u(4h) u(5h) u(6h) t
0.000 0.000 0.000 0.000 0.0060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
10.761 0.000 0.186 0.000-0.063 0.000 0.019 0.000 -0.006 0.000 0.002 0.000 0.631 0.000
0.168 ©.000-6.717 0.000 0.180 0.000 -0.060 0.000 0.018 0.000 -0.005 0.000 0.649 0.000
L 0.650 0.000 -0.627 0.000 0.148 0.000-0.051 0.000 0.015 0.000 -0.004 0.000 0.400 0.000
L0.054 0.000 0.178 0.000-0.713 0.000 0.179 0.000 -0.059 0.000 0.016 0.000 0.649 0.000
L0.596 0.000 0.237 0.000 -0.541 0.000 0.137 0.000 -0.045 0.000 0.012 0.000 0.525 0.000
0.140 0.000 -0.630 0.000 -0.629 0.000 0.149 0.000 -0.051 0.000 0.014 0.000 0.404 0.000
10.527 0.000 -0.595 0.000 -0.506 0.000 0.119 0.000 -0.041 0.000 0.011 0.000 0.312 0.000

N H b L=

The Homotopy paths for this system are shown in Figure 5. An average of 39 steps per root were

required along the homotopy paths.

IX. Conclusions

There are several features which a homotopy algorithm for finding the roots of a polynomial system
should incorporatet It must use @ homogeneous parameter to keep the homotopy path bounded, it must use
a reliable continuation method, and it must have some mechanism for switching branches at singular points.

Of the existing algorithms, [7] uses simplicial continuation, which is reliable and incorporates an implicit
branch switching technique, but is expensive for large systems. The algorithm of {3] uses a predictor-corrector
continuation method with poor behavior near singular points, and a genericity argument to construct a
homotopy which is free of sing;ular péints. ‘The algorithm of 6] usc a similar continuation method, and
deforms the homotopy perameter into the complex plane to avoid singular points.

The algorithm we hav? described uses pseudo-arclength continuation, which is a reliable technique, and
which does not fail near singular points [5]. At singuler points we use a new branch switching result, which
requires that the incoming tangent to the homotopy branch be multiplied by an appropriate complex scalar.
This is, in a local sense, equivalent to [6], being an excursion slong & small circle about the singular point,
in the complex homotopy parameter space.

We have given five example problems. These illustrate the problem with genericity arguments, for
although singular points are not generic, the initial system we chose exhibits singular points in three of the
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five examples. This is due mainly to out choice of an initial with real coefficients. Such systems have roots
which occur in conjugate pairs, and as a consequence a complex path cannot become real without becoming
singular. This ensures that a path will be singular if the system being solved does not have the same number
of complex roots as the initial system. The singular paths are still of measure gero, but the set of homotopies

has been restricted to the point that the set of singular homotopies has non-zero measure.
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Algebraic Bifurcation Equations

Flooo + 2F2 20k + F dodo = 0
. 3 2
120 17 +|A]” =1

Flygoig + 2F3, = 0
I3 [ =1

Fevofododo + 3FS,, £00do + 3O, 3030 + Fahododo =0
. 2
g0 1P + 14l = 1

Foendodoso + FO 290 = 0
2o |’ =1

ancéoéoi‘o + %FAOA‘()S) =0
130 | =1

F:“':l':oa.:oéoi‘o -+ 4F3“A2':oéoa':oio + GFBIAAioéoio:\o -+ 4F£Axaéoioioio -+ FAOAAAio io:\oj\o =0
. 32
130 II* + [A0]” =1

Fece®odododo + 3FS,  dodo o + 1P X0k =0
I o II* =1

e s e W ' 3
F.?,ucozomozo + %Ff“zokg ) =0

2o 1I* =1

Fo e e e . LFOA“)—
veos L0T0T0To + 3p Fy Ay = 0

Fo |I* =1

Table 1. The Algebraic Bifurcation Equations for M=1
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